污污污亚洲一区二区三区,亚洲αv久久久噜噜噜噜噜,亚洲成人露出在线www,无码国产精品一区二区免

FLYING PROBE TEST

PILOT NEXT>Series line
is the new generation of seica solutions flying probers with a sleek,

modern look and the most innovative technology around.

PILOT NEXT>Series line:

PILOT NEXT>Series is the new generation of flying probers featuring a renovated and sleek look thanks to the premium materials of the chassis, and innovative electrical worth discovering performances, undoubtedly the most complete flying probing test platform on the market.

All the PILOT NEXT> testers feature the Industrial Monitoring solution “4.0 ready” by Seica, to monitor current absorption, supply voltage, temperature, light indicators and other parameters useful to indicate the correct operation, to ensure predictive maintenance and make the systems compatible with the standards of the fourth industrial revolution ongoing nowadays.

The flying probe test systems PILOT NEXT> offer a vast series of solutions that are designed to optimize the “time” dimension while maintaining the highest level of test quality.

 ADVANTAGES OF FLYING PROBE TEST:

– Eliminates fixturing costs and time
– Fast test program development, easy integration of design changes
– Process flexibility
– Circuit access, even in the absence of test points
– Controlled probe contact, programmable for any type of board
– Different test solutions and approaches integrated in a single test system
– Intrinsic positioning and measurement precision

THE DIMENSION OF TIME IN FLYING PROBE

The dimension of time in the test of electronic boards and modules has a multi-faceted effect on the efficiency of the test process. It is fundamental in determining the added value it brings to the final product, which is paramount in today’s extremely competitive global market.
Consider test program development time, test execution time, digital component programming time, handling time and, last but not least, the time required to repair boards when the process has not been sufficiently monitored. Put all of this together with the challenges presented by the increasingly faster technological evolution of electronic products in terms of performance and cycle times, and it is easy to see that the dimension of time is an essential factor in the equation.

DIFFERENT ARCHITECTURES FOR DIVERSE SOLUTIONS IN FLYING PROBE

The PILOT NEXT offers architectural solutions, each one optimized for a specific type of application scenario:



FLYING PROBE TEST ENVIRONMENTS

MANUFACTURING, REPAIR, REVERSE ENGINEERING, PROTOTYPING and NEW PRODUCT INTRODUCTION (NPI), are typically the  environments where PILOT NEXT> are implemented.
The Seica VIP platform software, VIVA NEXT> series, common to all of the PILOT NEXT>Series systems, allows a completely versatile test approach, from simple ICT to functional tests, from automatic, net-oriented tests to the reconstruction of the data and electrical schematics of boards coming from the field.
MANUFACTURING: the evolution of the test algorithms and strategies present in the VIVA software mean that the PILOT NEXT testers provide fast, high performance production testing. The diverse, integrated test technologies such as optical inspection, thermal analysis, boundary scan, power-on functional test, and the possibility to include other processes such as on-board programming (OBP), allow the user to streamline the various production phases, optimizing process time.
REPAIR: There are different types of requirements for diagnosing faulty boards, depending on the characteristics of the boards themselves and the specific repair situation (manufacturing defects, field returns, repair depot, etc.).
The PILOT NEXT>Series line has an extensive tool set developed to address all of the repair scenarios, and the intrinsic flexibility of the flying probe test approach allows the user to implement from one to all of the test techniques available, to optimize the repair process and results.
PROTOTYPING AND NPI: by exploiting the versatility of the PILOT NEXT>Series hardware and software, it is possible to obtain immediate data from the testing of prototypes, avoiding costs and time for building preliminary fixtures or test benches, ensuring maximum fault coverage in the minimum time.
REVERSE ENGINEERING (RE): the necessity of managing field returns is a constant in today’s industy, and in some sectors, such as transportation, infrastructure, communication and defense, the repair returns are often older boards which do not have complete documentation, schematics or construction data. The double-side solutions offered in the PILOT NEXT>Series line are ideally suited to carry out reverse-engineering operations, and include all of the necessary software tools to enable the reconstruction of the electrical schematics and the CAD data of the board under repair. This helps to facilitate fault detection and repair, and to produce the documentation necessary for legacy support of the product.

FLYING PROBE AND INDUSTRY 4.0

Information and the technology needed to collect and analyze data, is key to the successful digitalization of the manufacturing process, which is at the heart of the Industry 4.0 concept.
The  PILOT NEXT>Series line has all of the capabilities needed for implementation in any Factory 4.0 scenario, providing the possibility to plug in any proprietary or third party information system to achieve the desired goals.

FLYING PROBE TEST: WHY AND WHICH SYSTEM?

During the last decade, flying probe test have continued to evolve and now offer such a wide range of performances, that it is sometimes difficult for the user to choose the most suitable architecture and configuration.
Born about 30 years ago in the midst of general skepticism, especially from electrical test engineers, flying probe test systems are  now considered worldwide as fundamental and essential tools to test  all types of of electronic boards. The significant market share  that  flying probe testers have conquered over the years, is beyond all doubt due to the constant demand for more flexibility and cost savings of  electronics manufacturers, always seeking advanced tools and equipment to certify the quality of their products and at the same time  cope  with the reduced life cycles  imposed by a frenetic market constantly eager for news.
The initial prerogative that roused the interest  towards flying probe testers was certainly the lack of fixtures dedicated to a specific kind of board and hence the possibility to set up test programs  without the recurring costs needed to build up a specific bed of nails destined to die along with the product to be tested. This is still one of the biggest  advantages that can make a flying probe system more desirable than a traditional bed of nails in-circuit system. But the “brave” users, or, better, the farsighted ones, who successfully tried out a flying probe system about ten years ago , gradually came to realize  their great potential and began to require higher and higher performances, inducing the test systems manufacturers to  invest significantly in  the research and development of new measurement, mechanical motion and software technologies to enrich the flying probe testers with new functions. This great technological effort has produced  results that were inconceivableuntil a few years ago, transforming  the flying probe tester used for simple MDA testing of passive components  into a real multifunctional test platform, providing the user with several advantages in terms of speed, reliability, fault coverage and cost of test.
However, as often happens when a type of  equipment has undergone  years of development , and improvements, and becomes  a mature technology, the range  of offers available become  so wide and varied that the choice is made more and more complicated for the end user.
Those that are considering  the purchase of a flying probe test system today must make  strategically important and often not obvious  choicesconcerning the system architecture  strictly depending on the test requirements of the customer himself. To choose the most suitable architecture, it is important to know, with good approximation, what and how is to be tested, but it is often enough to have a couple of clear ideas that serve to orient the choice towards the best solution.


欧美日韩亚洲中文综合网| 午夜影院免费在线观看电影| 无码一区二区三区色哟哟| 同性两男a片黄在线观看| 亚洲第一色无码无遮视频| 精品久久久久久18禁播| 亚洲a级片手机看片不卡| 亚洲第一页综合| 欧美a在线观看| 久久久久国产精品免费a片| 亚洲精品无码久久久久久久| 色悠悠综合在线资源网站| 东京热无码AV一区二区| 国产香蕉视频在线播放| 狠狠色婷婷久久一区二区三区| 欧美办公室丝袜激情在线| 国产激情一区二区三区不卡| 国产区二区三区在线观看| 亚洲a∨精品一区二区三区| 欧洲亚洲一区二区三区国产| 国产裸舞福利在线视频合集| 成人69式视频在线观看| 久久天天躁狠狠躁夜夜夜| 国产三级在线播放第一页| 久久精品国产蜜桃av麻豆| www亚洲中文在线日本| 久久久久亚洲av片蜜桃| 亚洲综合久久区二区三区| 久久午夜无码鲁丝片| 91av国产精品你懂的| 亚洲视频中文字幕在线观| 国产成人一区二区三区| 国产精品一国产精品免费| 日韩精品无码一区二区三区| 婷婷午夜激情视频在线观看| 久久久精品午夜福利电影| 999精品久久三级黄片| 国产精品敌一区二区三区| 欧美色精品视频播放在线| 清纯唯美丝袜美腿亚洲一区| 久久久久久久bbbb网站|